氣體吸附分離技術簡介
氣體吸附分離技術是近年發展較快的一項新技術, 按照再生方式的差異常分為變壓吸附法和變溫吸附法兩類:
(1)變壓吸附(英文名稱Pressure Swing Adsorption,簡稱為PSA)法提純或分離單元是根據恒定溫度下混合氣體中不同組份在吸附劑上吸附容量或吸附速率的差異以及不同壓力下組分在吸附劑上的吸附容量的差異而實現的,由于采用了壓力漲落的循環操作,強吸附組份在低分壓下脫附,吸附劑得以再生;吸附劑的使用壽命一般為十年以上,所以PSA 過程基本是無原料消耗過程;
(2)變溫吸附法(英文名稱 Temperature Swing Adsorption,簡稱為TSA)或變溫變壓吸附法(簡稱為PTSA)是根據待分離組份在不同溫度下的吸附容量差異實現分離,由于采用溫度漲落的循環操作,低溫下的被吸附的強吸附組份在高溫下得以脫附,吸附劑得以再生,冷卻后可再次于低溫下吸附強吸附組份。確定是否采用吸附法分離的主要依據為待分離組分之間的吸附等溫線,圖1為待分離組分A(污染物)、B(非污染物)的在溫度為t1或t2的吸附等溫線所示:
![]() |
對于污染排放物A如果與非污染組份B吸附容量差別較大,則可考慮PSA技術(當然,有時動態吸附容量也是確定分離的一個依據,但在污染治理中很少涉及);對于常溫(t1)下強吸附組份A不能良好解吸的分離,可考慮采用TSA或PTSA技術。
吸附分離技術采用的吸附劑通常為活性炭、硅膠、氧化鋁等常規吸附劑或在吸附劑上附載不同貴金屬的專用吸附劑,或者是開發不同孔徑、不同微孔容積的專用吸附劑。
吸附工藝過程循環的實現
PSA、TSA或PTSA 過程的連續運行通常是通過多個吸附器依靠閥門切換實現的,當某些塔在吸附時,其它的吸附器則處于再生等步驟;吸附飽和后的吸附劑需要再生時,其它已再生好的吸附器開始進入吸附步驟,如此實現循環操作。下圖為西南化工研究院實驗開發成功的TSA凈化并回收硝酸尾氣中NOx的流程示意圖。
![]() |

使用微信“掃一掃”功能添加“谷騰環保網”